Запасные части для коммунальной и дорожно-строительной техники

Биология

1983. Симаков Ю.Г., "Информационное поле жизни".


Информационное поле жизни.

Симаков Ю.Г.

«Химия и жизнь», 1983, № 3, стр. 88.
http://ttizm.narod.ru/gizn/infpg.htm

        Человек как должное принимает гармонию живого, порой восхищается ею и зачастую не думает, как эта гармония строится и развивается. Но разве в генетической программе живых существ не записаны присущие им и их потомкам черты, вплоть до крохотного пятнышка на раковине моллюска или характерного движения головы у матери и дочери? Записаны! Однако как эту запись развернуть в пространстве, в ходе развития организма? Ведь нужно соблюсти не только размеры, форму, строение и функции любого органа растения или животного, но и их тончайшую биохимию. Даже рост и тот надо вовремя остановить.
        Биологи пока не могут ответить на множество вопросов, которые перед ними поставила самая прозаичная картина – картина развития организмов, или, как говорят в науке, морфогенез. И вовсе не зря видный американский биолог Э. Синнот сказал, что "морфогенез, поскольку он связан с самой отличительной чертой живого – организацией, – это перекресток, куда сходятся все пути биологических исследований".
        Какие же знаки есть на этом перекрестке? Где хранится сама пространственная запись, которая "переводит" химический язык генетического кода в реальную объемную структуру, в тело?
        Скорее всего в любой живой клетке хранится программа ее будущего месторасположения, клетка как бы "знает", где ей надо остановиться, когда перестать делиться и какую форму принять, чтобы войти в состав того или иного органа. Клетки, строящие организм, не только точно вовремя перестают расти, делиться и принимают разную форму, они специализируются или дифференцируются, а порой даже отмирают, чтобы получилась необходимая пространственная структура. Например, так появляются пальцы на конечностях зародыша – ткани между будущими пальцами гибнут, а из пластинки – зачатка кисти формируется пятипалая рука. Неведомый скульптор ваяя живое существо, не только перераспределяет, но и удаляет ненужный материал, чтобы воплотить то, что намечено генетической программой.
        Молекулярная генетика выяснила пути передачи информации от ДНК к информационной РНК, которая в свою очередь служит матрицей для синтеза белков из аминокислот. Сейчас тщательно исследуют влияние генов на обмен веществ в клетке и на их синтез. Но при воплощении пространственной структуры, скажем, клубня редиски или причудливой раковины вряд ли обойдешься одними генами. Сомнения такого рода давно будоражат умы эмбриологов, и именно у них, у людей, занимающихся пространственной дифференцировкой клеток, появилась концепция так называемого морфогенетического поля. Смысл множества теорий на эту тему сводится к тому, что вокруг эмбриона или зародыша присутствует особое поле, которое как бы лепит из клеточной массы органы и целые организмы.
        Наиболее разработанные концепции эмбрионального поля принадлежат австрийцу П. Вейсу, долгие годы работавшему в США, и советским ученым А.Г. Гурвичу и Н.К. Кольцову (см. А.Г. Гурвич "Теория биологического поля", М." 1944, и главу "Теория полей" в книге Б.П. Токина "Общая эмбриология", М., 1968). По мнению Вейса и Гурвича, морфогенетическое поле не обладает обычными физико-химическими характеристиками. Гурвич назвал его биологическим полем. В противоположность этому Н.К. Кольцов полагал, что поле, командующее целостностью развития организма, сложено обычными физическими полями.
        Вейс писал, что первоначальное поле действует на клеточный материал, формирует из него те или иные зачатки организма и что по мере развития образуются все новые и новые поля, командующие развитием органов и всего тела особи. Короче говоря, развивается поле, затем сам зародыш, причем клетки организма вроде бы пассивны – их деятельностью руководит морфогенетическое поле. Концепция же биологического поля А.Г. Гурвича зиждется на том, что оно присуще каждой клетке организма. Однако сфера действия поля выходит за пределы клетки, клеточные поля как бы сливаются в единое поле, которое меняется при пространственном перераспределении клеток.
        Согласно обеим концепциям, биологическое поле развивается так же, как и зародыш. Однако, по Вейсу, оно делает это самостоятельно, а по теории Гурвича – под влиянием клеток зародыша.
        Но мне думается, что если взять за аксиому самостоятельное развитие биологического поля, то наши знания вряд ли продвинутся вперед. Ибо, чтобы хоть как-то объяснить пространственное развитие самого биологического поля, нужно вводить некие поля 2-го, 3-го порядков и так далее. Если же клетки сами строят себе такое поле, а затем изменяются и перемещаются под его воздействием, то морфогенетическое поле выступает как орудие для распределения клеток в пространстве. Но как тогда объяснить форму будущего организма? Скажем, форму лютика или бегемота.
        По теории Гурвича, источником векторного поля служит ядро клетки и только при сложении векторов получается общее поле. А ведь вовсе неплохо себя чувствуют организмы, у которых только одно ядро. Например, трехсантиметровая одноклеточная водоросль ацетабулярия обладает ризоидами, напоминающими корни, тонкой ножкой и зонтиком. Как одно-единственное ядерное поле дало такую причудливую форму? Если у ацетабулярии отрезать ризоид, в котором содержится ядро, она не потеряет способности к регенерации. Например, если ее лишить зонтика, он снова вырастет. Где же тогда заключена пространственная память?
        Давайте поищем выход из всех этих несоответствий. Почему биологическое поле непременно должно меняться при развитии организма, как и сам зародыш? Не логичнее ли думать, что поле с первых же стадий развития не меняется, а служит той матрицей, которую зародыш стремится заполнить? Но тогда откуда взялось само поле и почему оно столь четко соответствует генетической записи, присущей данному организму?
        И не стоит ли предположить, что поле, управляющее развитием, порождено взаимодействием спиральной структуры ДНК, где хранится изначальная генетическая запись, с окружающим пространством?
        Ведь это может дать как бы пространственную запись будущего существа, будь то тот же лютик или бегемот. При увеличении числа клеток в ходе их деления поля, образованные ДНК, суммируются, общее поле растет, но сохраняет некую присущую только ему организацию.
        Поле организма, спаивающее воедино все его части и командующее развитием, по-моему, точнее именовать информационным индивидуальным полем. Какова же его предполагаемая природа? По одним понятиям, это комплекс физико-химических факторов, которые образуют единое "силовое поле" (Н.К. Кольцов). По мнению других исследователей, биологическое поле, возможно, вбирает в себя все ныне известные физико-химические полевые взаимодействия, но представляет собой качественно новый уровень этих взаимодействий. А так как любому существу присуща индивидуальность, заданная генетическим кодом, то и информационное поле организма сугубо индивидуально.
        В 1981 году западногерманский исследователь А. Гирер опубликовал идею о том, что роль генетического аппарата сводится преимущественно к генерации сигналов для замены одного морфогенетического поля другим. Если это так, то вокруг любого существа как "рубашки" меняются поля, когда организм дорастает до границ очередной "одежды". С этой точки зрения на развитие морфогенетического поля можно смотреть как на цепь скачков в перестройке пространственной информации.
        Никто не отрицает, что ядро любой живой клетки таит в себе всю генетическую программу организма. В ходе дифференцировки в разных органах начинает работать только та часть генетической программы, которая командует синтезом белков в этом конкретном органе или даже o отдельной клетке. А вот у информационного поля, наверное, нет такой специализации – оно всегда целое. Иначе просто не объяснить его сохранность даже в малой части организма.
        Такое предположение не умозрительно. Чтобы показать целостность информационного поля в каждой части организма, возьмем удобные для этого живые существа.
        У слизистого грибка миксомицета-диктиостелиума любопытный жизненный цикл. Сначала его клетки как бы рассыпаны и передвигаются в виде "амеб" по почве, затем одна или несколько клеток выделяют вещество акразин, что служит сигналом "все ко мне". "Амебы" сползаются и образуют многоклеточный плазмодий, который выглядит червеобразным слизнем. Этот слизень выползает на сухое место и превращается в маленький тонконогий грибок с круглой головкой, где находятся споры. Прямо-таки на глазах из клеток собирается причудливый организм, который как бы заполняет свое уже имеющееся информационное поле. Ну, а если наполовину сократить количество сливающихся клеток, что получится – половина грибка или целый? Так и делали в лабораториях. (Опыты с грибками изложены в книгах Д. Тринкауса "От клеток к органам", "Мир", 1971 и Д. Иберта "Взаимодействие развивающихся систем", "Мир", 1968.) Из половины "амеб" получается той же формы грибок, только вдвое меньше. Оставили 1/4 клеток, они опять слились и дали грибок со всеми присущими ему формами, только еще меньших размеров.
        И не получается ли, что любое число клеток несет информацию о форме, которую им надо сложить, собравшись вместе? Правда, где-то есть предел, и малого количества клеток может не хватить для построения грибка. Однако, зная это, трудно отказаться от мысли, что форма грибка заложена в информационном поле еще тогда, когда организм рассыпан на отдельные клетки. При слиянии клеток их информационные поля суммируются, но это суммирование выглядит скорее как разрастание, раздувание одной и той же формы.
        А плоские черви планарии могут восстановить облик из 1/300 части своего тела. Вот что говорится об этом в книге Ч. Бодемера "Современная эмбриология" ("Мир", 1971). Если нарезать планарии бритвой на разные по величине кусочки и оставить их в покое на три недели, то клетки поменяют свою специализацию и перестроятся в целых животных. Через три недели вместо неподвижных изрубленных на кусочки плоских червей по дну кристаллизатора ползают планарии, почти равные взрослым, и крошки, едва заметные на глаз. Но у всех, у больших и малых, видна головка с глазами и расставленными в стороны обонятельными "ушками", все они одинаковые по форме, хотя различаются по размерам в сотни раз. Каждое существо появилось из разного количества клеток, но по одному "чертежу". Вот и выходит, что любой кусочек тела планарии нес целое информационное поле.
        Сходные опыты я ставил с одноклеточными организмами, с крупными, в два миллиметра ростом, инфузориями спиростомами ("Цитология", 1978, т. 20, № 7). Такую инфузорию можно разрезать микроскальпелем под микроскопом на 60 частей, и каждая из них снова восстанавливается в целую клетку. Инфузории растут, но не бесконечно. Клетки, достигнув положенного им размера, как бы упираются в невидимую границу. Вот эту границу и может поставить информационное поле.
        Получается, что информационное поле одинаково служит одноклеточным, колониальным и многоклеточным организмам. И не стоит ли предположить, что еще до оплодотворения половые клетки несут готовые информационные поля? А при оплодотворении, когда сперматозоид и яйцеклетка сливаются и их генетический материал объединяется, суммируются и информационные поля, давая промежуточный или обобщенный тип, с признаками матери и отца.
        Клетки без ядер могут жить, но теряют способность к регенерации, самовосстановлению. Правда, вспомните про ацетабулярию, у которой новый зонтик вырастает и без ядра. И хотя такое может осуществиться лишь один раз, этого уже достаточно, чтобы предположить невероятное: информационное поле некоторое время сохраняется вокруг клетки, даже если она лишена основного генетического материала!
        Размеры живых существ закреплены генетически. Мышь-малютка и громадный слон вырастают из яйцеклеток, почти равных по размеру. Даже существа одного вида, у которых генетическая программа развития очень и очень близка, которые легко скрещиваются, по габаритам могут быть весьма различны. Сравните, например, собачку чи-хуа-хуа, которую можно засунуть в карман, и огромного дога.
        Условия для организма могут быть хорошими и плохими. Организм может расти быстро или медленно, но в норме он не переходит невидимой, генетически закрепленной границы своих размеров. Право, кроме информационного индивидуального поля, пока не видно иного механизма управления ростом, который точно бы воспроизводил наследственную запись в ядре любой клетки и в то же время объединял бы все клетки в единое целое.
        Много труда приложили биологи, чтобы выявить причины, побуждающие клетку начать деление – митоз. Научись люди управлять этим процессом, и над злокачественными опухолями, в которых пока неудержимы клеточные деления, был бы занесен меч.
        В самом деле, почему в ране, после того как она заросла, бурная волна клеточных делений стихает, а в злокачественных опухолях бушует, пока жив организм? Сначала для объяснения этого феномена привлекли теорию раневых гормонов. Будто бы в клетках есть вещества, которые при травмировании ткани изливаются в поврежденную область и заставляют усиленно делиться клетки, окружающие рану. Когда рана затягивается, концентрация гормонов падает и клеточные деления прекращаются. Увы, теория не оправдалась, и на смену ей пришла противоположная идея, выдвинутая В. С. Буллоу, гласящая, что особые вещества кейлоны при определенной концентрации подавляют митозы. После травмы концентрация кейлонов падает и митозы возобновляются до тех пор, пока повреждение не восстановится и концентрация кейлонов не достигнет надлежащего уровня. Эксперименты показали, что кейлоны в разных органах различны, но они отнюдь не видоспецифичны. Например, препарат из кожи трески может остановить митозы в коже пальца человека.
        Взгляните на кончик своего пальца, вы увидите папиллярные линии, характерные только для вас. При повреждении они могут быть вовсе уничтожены. Однако, если не образуется рубца, после регенерации папиллярный рисунок опять появится. Неужели на такое изощренное художество способны кейлоны? Информационное поле куда лучше подошло бы на роль живописца.
        Не так давно я экспериментировал с эпителием хрусталика глаза лягушки ("Известия АН СССР", 1974, № 2). Каждый раз при травмировании хрусталика митозы появлялись в неповрежденных частях эпителия, а полоса митозов довольно точно повторяла конфигурацию травмы. И еще одна странная особенность: площадь, ограниченная полосой митозов, не зависит от величины травмы. Теории раневых гормонов и кейлонов здесь ничего не объясняют. При химической регуляции площадь, охваченная митозами, зависела бы от величины травмы. Не информационное ли поле передает форму травмы?
        Конечно, выводы делать рано, а дальнейшие рассуждения могут привести только к новым вопросам. Но все-таки я верю, что наступит время, когда на многое в биологии развития придется взглянуть по-другому.


Краткий комментарий.

Белоусов Л.В.

        В статье Ю.Г. Симакова затронуты очень важные вопросы биологии, еще не получившие удовлетворительного решения. В самом деле, как именно идет морфогенез и каким образом многоклеточный зародыш или даже одна клетка могут восстанавливать свою форму и структуру после иногда очень глубоких нарушений целостности? Привлечение к этому внимания читателей можно лишь одобрить.
        Автор кратко излагает теории морфогенеза П. Вейса, А.Г. Гурвича и Н.К. Кольцова, правда, не упоминая о некоторых существенных сторонах этих концепций, а затем переходит к своей гипотезе "информационного поля". Основная ее идея в том, что поле с первых же стадий развития не меняется, а служит той матрицей, которую зародыш стремится заполнить. Эта мысль восходит еще к теории "морфэстезии" биолога Нолля, высказанной во второй половине прошлого века. Нолль утверждал, что развивающийся организм ощущает несоответствие между своей моментальной и конечной формой и стремится сгладить это несоответствие. Разработка этой идеи есть и в ранних (1912, 1914 гг.) работах А.Г. Гурвича по так называемой "динамически преформированной морфе".
        Гипотеза Ю.Г. Симакова, на мой взгляд, пока дает лишь кажущееся решение проблемы, наподобие того, как если бы вместо поиска решения задачи мы сразу заглянули бы в ответ, назвали его и утверждали бы, будто задача решена. Ответ-то в данном случае известен: организм отлично регулирует свою форму, структуру и иногда и размеры. Весь вопрос в том, как именно он это делает.
        В биологии сейчас намечается, на мой взгляд, несколько перспективных подходов к решению этой проблемы. Первый из них – дальнейшее развитие концепций биологических полей, о которых говорит автор. В том числе и разработка принципа физиологических градиентов, который ныне воплотился в понятие так называемой позиционной информации. Хотя эта концепция не безгрешна и не может считаться универсальной, игнорировать ее все же нельзя. Другое перспективное направление – разработка центральной идеи А.Г. Гурвича о том, что сама форма (геометрия, топология) развивающегося организма содержит в себе достаточные основания для развития следующей формы и так далее. Это направление может вобрать в себя идеи К. Уоддингтона, Р. Тома и других об устойчивых и неустойчивых формах.
        Недавно зародилось и интенсивно развивается совершенно другое направление, пришедшее в биологию из математики и теоретической физики, – так называемая синергетика, или теория диссипативных структур. В принципе явления регуляции формы и вообще феномены морфогенеза могли бы быть объяснены в терминах синергетики, хотя и здесь ещё много серьезных неясностей и несоответствий. Лично я думаю, что оптимальное решение проблем морфогенеза и регуляций формы лежит, возможно, где-то между теориями биологических полей и диссипативных структур. Не исключено, что эти направления сольются.
        В любом случае самый верный путь – это кропотливое, шаг за шагом экспериментальное и теоретическое исследование проблемы. Я хотел бы предостеречь и от соблазнительного нигилизма: например, отрицания химических регуляторов роста и морфогенеза. Конечно, их действие должно еще чем-то регулироваться, но это не значит, что химических регуляторов вообще не существует.
        И последнее. Термин "биополе" ныне приобрел антинаучный привкус: слово "биополе" в ходу у некоторых субъектов, ничего общего с наукой не имеющих. Отождествлять их взгляды с научным наследием крупных ученых недопустимо. Чтобы была ясна эта разграничительная черта, я предлагаю не употреблять применительно к Вейсу, Гурвичу и другим ученым термин "биополе", который сами они никогда не использовали, а употребляли словосочетание "биологическое поле".

Справка:

Симаков Юрий Георгиевич (1939 г.р.), биолог-зоолог, доктор биологических наук. В 1966 году окончил МГУ им. М.В. Ломоносова, работает в области гидробиологии и водной токсикологии (Институт медико-биологических проблем РАМН), уделяет большое внимание проблемам экологического равновесия в окружающей среде.
В 1976 году Ю.Г. Симаков начал принимать участие в исследовании НЛО. Известен в уфологических кругах тем, что впервые предложил использовать живые микроорганизмы для изучения следов от посадок НЛО и активно сотрудничал с Ф.Ю. Зигелем, который даже предложил назвать этот способ уфологических исследований «методом Симакова».

Белоусов Лев Владимирович (1935 г.р.), доктор биологических наук, профессор МГУ им. М.В. Ломоносова, член-корреспондент РАЕН, академик Нью-Йоркской академии наук.